Printable Bio-Sensors for Healthcare and Other Applications

Dr Jeremy Burroughes
Why Point of Care Biosensors?

- POC biosensors for disease diagnosis and condition monitoring is a large and growing market
 - Also growing markets in animal care, agriculture and food monitoring
- POC devices on the market can only test a limited number of analytes at the same time
 - Separate tests can be required to obtain the diagnosis,
 - Additional needs are
 - Wide dynamic range
 - Rapid (< 10 minutes)
 - Portable but accurate and sensitive
 - Cost effective
- We are developing together with Abingdon Health a printable organic electronics biosensor platform for healthcare and other applications
CDT Introduction

- CDT is a Cambridge University spin-out company to develop printable organic LEDs.
- Since 2007, has been part of Sumitomo Chemical Group
- More recently it's become an European based technology research centre for the group.
- Examples of current R&D projects
 - FlexOLED – low cost printed OLED
 - Organic Photodiodes (OPD) for x-ray and other applications
 - Flexible energy storage and capture solutions
 - Bio-sensors for medical, agricultural and environmental applications
 - Utilises CDT printed electronics technologies
 - In partnership with Abingdon Health
Abingdon Health Introduction

- Abingdon Health (AH) is focused on providing rapid multiplexed and near-patient medical diagnostics testing solutions.
- Developing a range of lateral flow immunoassays to allow diagnosis and monitoring of haematology-oncology conditions.

2016 Products

- Seralite© Serum, Seralite© Urine, ADxLR5 Reader, Seralite© Elisa
- Focused on Myeloma, both Seralite© assays (FLC-\(\kappa\) and FLC-\(\lambda\)) have robust analytical performance
 - Wide dynamic range (2.5 to 200 \(\mu\)g/ml)
 - Excellent linearity
 - Study of 395 samples \(\kappa/\lambda\) ratio to clinical diagnosis
 - Sensitivity = 99%. Specificity = 100%. Accuracy = 99%

ADxLR5 reader CE marked & Class I device (FDA) registered

Note: Sebia is the global distributor for Seralite© Serum
Biosensor Vision

- Integrate arrays of printed organic electronic components with a lateral flow device (LFD) to make a disposable, single use quantitative biosensor. i.e. FlexOLED and OPD technology

- Cost effective printable multi-channel system for multiplexed assays
 - Multi-biomarker panels
 - Extended dynamic range
 - Redundancy and repeats

- Thin, light-weight elements with planar emitters and detectors have potential for low coefficient of variation
 - Proximity integration of optical & fluidic elements
 - Reduced alignment errors
 - Area average over test & control lines
 - Compensate for LFD non-uniformity
Biosensor Vision

Build POC a cartridge with 18 parallel tests

Working Prototype Cartridge

FlexOLED

OPD

Working Prototype Cartridge Reader
Biosensor Performance

Biosensor/Desktop Reader Comparison

- Benchtop: Reflection Mode
- Biosensor: Transmission Mode

Same Strip Used in Both Devices

Wide Dynamic Range

- Desensitised
- Normal
- Low - Sensitivity
- Mid - Sensitivity
- High Sensitivity

Achieve wide dynamic range from one sample

Very high sensitivities less than 1 µg/ml demonstrated

© CDT 2016 – Company Confidential
Optical Technology Options

- Absorption/Reflection
 - Measured response is due to a change in light intensity at the photodiode due to capture of the target molecule.
 - Simple architecture
 - Limited sensitivity

- Fluorescence
 - Molecule irradiated with a colour which is then re-emitted as a different colour of lower energy
 - Requires a filter to stop the excitation light impinging on the photodetector.
 - Potential for maximum sensitivity
Fluid Handling Options

- Two key fluid handling technologies
 - Lateral Flow Devices as shown before and used in pregnancy tests
 - Simple, very low cost
 - Sensitivity limited due to reduced range of bio-chemistry options
 - Micro-fluidic devices; patterned channels in plastic to allow more complex bio-chemistry to occur
 - More complexity therefore higher cost
 - Potential for higher sensitivity
Troponin Tests

- Troponin (cardiac I and T) are sensitive indicators for damage to heart muscle
 - Blood measurements can discriminate between angina and myocardial infarction (heart attack)
 - Post heart attack the troponin levels increase and peak at about 24 hours after the event
 - NICE (UK) recommends two tests 10 hours apart to monitor changes in troponin levels
 - However they recognise that with the availability of more sensitive tests this time can be reduced substantially.
 - Also Troponin increases, can be an indication of infections such as sepsis
- Troponin test has also become a gold standard for evaluating diagnostic tool capability.
Troponin Assay

- **Glass**
- Biotinylated-Ab
- AP-Ab
- Antigen (Troponin I)
- Blocking reagent (BSA)
- Streptavidin

Enzyme Amplification

Optimised Assay

- LOD of ~ 10 pg/ml

Limit of detection potentially 1pg/ml = ~ 45 fM using microfluidic system
Troponin Tests (~ 10% IVD market)

- **Troponin LOD**
 - 1pg/ml
 - 10pg/ml
 - 100pg/ml

- **μ-fluidic fluorescent system**
- **LFD absorption system**
- **Quantitative, objective, accurate**
- **Qualitative/subjective**

Troponin Tests

- **Troponin Trop T**
 - No reader, no capex, $10-20

- **Portable reader, capex**
 - $2-9K, ≤ $20

- **Desktop reader, capex**
 - $20-25K, ≤ $20

- **Laboratory equipment**
 - Capex $150-225K

Troponin LOD

- Siemens stratus
- Radiometer AQT
- Biomerieux minividas
- LOD 10-30 pg/ml

- Beckman coulter access
- Siemens advia centaur
- LOD 1-10 pg/ml

Size and Cost

- Troponin Tests (~ 10% IVD market)
 - µ-fluidic fluorescent system
 - LFD absorption system
Current Status (Fluorescent Platform)

Biomarker Class

- **Ions**
 - Na, K
 - Ca: 0.4-60 µg/ml

- **Small molecules**
 - Nitrate

- **Proteins**
 - Glucose: <10 µg/ml
 - C-reactive Protein: 300 pg/ml
 - Troponin: 10 pg/ml
 - DNA: 1 µg/ml

- **DNA/RNA**
 - DNA

Limit of Detection

- Fluorescence
- Organic Transistor

Developed a 4 channel Ion sensor
Where Next?

- With bench top sensitivity and wide dynamic range in a hand held device
- We are exploring additional applications where array diagnosis makes sense
 - Medical: i.e. Drugs of Abuse
 - Agriculture: fungal disease identification
 - Animal welfare
 - Food safety: contamination
- If this resonates with your needs please contact us!
Summary

- Printable organic electronic devices can be used to make very sensitive bio-assays
 - Using integrated FlexOLED and OPD commercially useful performance can be demonstrated.
- Working with Abingdon Health on the absorption/LFD based system
 - Large arrays of sensors can be used to test a wide range of conditions or to achieve a wide dynamic range from only one sample
 - CDT and Abingdon Health are scaling up the manufacturing process focused on the haematology-Oncology market
 - Myeloma (Diagnosis and Monitoring)
- We have also demonstrated using a fluorescent platform with a wide range of biologically relevant analytes
 - Achieving LOD for Troponin of 10 pg/ml
If you are interested to discuss applications please contact us

Via Our Website: www.cdtltd.co.uk

Directly: jburroughes@cdtltd.co.uk